The "albumin effect" and in vitro-in vivo extrapolation: sequestration of long-chain unsaturated fatty acids enhances phenytoin hydroxylation by human liver microsomal and recombinant cytochrome P450 2C9.
نویسندگان
چکیده
This study characterized the mechanism by which bovine serum albumin (BSA) reduces the K(m) for phenytoin (PHY) hydroxylation and the implications of the "albumin effect" for in vitro-in vivo extrapolation of kinetic data for CYP2C9 substrates. BSA and essentially fatty acid-free human serum albumin (HSA-FAF) reduced the K(m) values for PHY hydroxylation (based on unbound substrate concentration) by human liver microsomes (HLMs) and recombinant CYP2C9 by approximately 75%, with only a minor effect on V(max). In contrast, crude human serum albumin increased the K(m) with both enzyme sources. Mass spectrometric analysis of incubations containing HLMs was consistent with the hypothesis that BSA sequesters long-chain unsaturated acids (arachidonic, linoleic, oleic) released from membranes. A mixture of arachidonic, linoleic and oleic acids, at a concentration corresponding to 1/20 of the content of HLMs, doubled the K(m) for PHY hydroxylation by CYP2C9, without affecting V(max). This effect was reversed by addition of BSA to incubations. K(i) values for arachidonic acid inhibition of human liver microsomal- and CYP2C9-catalyzed PHY hydroxylation were 3.8 and 1.6 microM, respectively. Similar effects were observed with heptadecanoic acid, the most abundant long-chain unsaturated acid present in Escherichia coli membranes. Extrapolation of intrinsic clearance (CL(int)) values for each enzyme source determined in the presence of BSA and HSA-FAF accurately predicted the known CL(int) for PHY hydroxylation in vivo. The results indicate that previously determined in vitro K(m) values for CYP2C9 substrates are almost certainly overestimates, and accurate in vitro-in vivo extrapolation of kinetic data for CYP2C9 substrates is achievable.
منابع مشابه
Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance.
Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme sou...
متن کاملSubstrate-dependent effect of acetonitrile on human liver microsomal cytochrome P450 2C9 (CYP2C9) activity.
Acetonitrile is an organic solvent commonly used to increase the solubility of lipophilic substrates for in vitro studies. In this study, we examined its effect on four reactions (diclofenac hydroxylation, tolbutamide methyl hydroxylation, phenytoin hydroxylation, and celecoxib methyl hydroxylation) catalyzed by human liver microsomes and by the recombinant CYP2C9. In both cases, the effect of ...
متن کاملRequirement for v and ( v – 1 ) - hydroxylations of fatty acids by human cytochromes P 450 2 E 1 and 4 A 11
Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of v and ( v –1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty a...
متن کاملInvolvement of cytochrome P450 2E1 in the (omega-1)-hydroxylation of oleic acid in human and rat liver microsomes.
In vitro techniques have been used to investigate the nature of microsomal cytochrome P450 involved in the metabolism of oleic acid, a physiological monounsaturated fatty acid. Like lauric acid, which is currently used as a model substrate of fatty acid metabolism, the alkyl chain of oleic acid is hydroxylated on its omega and (omega-1) carbons. The identity of these hydroxylated metabolites wa...
متن کاملInvolvement of cytochrome P450 2E1 in the ( v –1)-hydroxylation of oleic acid in human and rat liver microsomes
In vitro techniques have been used to investigate the nature of microsomal cytochrome P450 involved in the metabolism of oleic acid, a physiological monounsaturated fatty acid. Like lauric acid, which is currently used as a model substrate of fatty acid metabolism, the alkyl chain of oleic acid is hydroxylated on its v and ( v –1) carbons. The identity of these hydroxylated metabolites was asce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 5 شماره
صفحات -
تاریخ انتشار 2008